三大数论猜想:简单到初中生都懂,却难倒数学家
数论,大数单到懂这个数学中最古老且基础的论猜分支,以其简洁与深邃吸引着无数人的想简南平市某某化工业务部目光。
数论探索的初中是整数的性质及其之间的复杂关系。其中有些问题,生都数学尽管看似简单,难倒却隐藏着极大的大数单到懂挑战。比如,论猜哥德巴赫猜想、想简南平市某某化工业务部考拉兹猜想以及孪生素数猜想,初中这些问题虽然容易理解,生都数学但要找到它们的难倒证明却异常艰难。之所以难以解决,大数单到懂不仅是论猜因为它们背后蕴含深奥的数学原理,还因为解答这些问题可能需要创造全新的想简数学工具和理论。
1. 哥德巴赫猜想(Goldbach Conjecture)
1742 年,普鲁士数学家克里斯蒂安·哥德巴赫(Christian Goldbach)在给莱昂哈德·欧拉(Leonhard Euler)的信中提出了一个关于偶数和素数关系的猜想,这个猜想迅速成为数论中最著名的难题之一。
![]()
哥德巴赫猜想有两个版本:
- 强哥德巴赫猜想:每个大于 2 的偶数都可以表示为两个素数之和。例如:
4 = 2 + 2 6 = 3 + 3 8 = 3 + 5 ... 12 = 5 + 7 = 7 + 5 24 = 5 + 19 = 7 + 17 = 11 + 13 = 13 + 11 ...
- 弱哥德巴赫猜想:每个大于 5 的奇数都可以表示为三个素数之和。例如:
7 = 2 + 2 + 3 9 = 2 + 2 + 5 11 = 3 + 3 + 5 ...
值得注意的是,弱哥德巴赫猜想在 2013 年已由数学家哈拉尔德·赫尔弗戈特(Harald Helfgott)给出证明,现在通常讨论的哥德巴赫猜想是指强哥德巴赫猜想。
到目前为止,强哥德巴赫猜想已经通过计算机验证到 4 × 10^18 以上的数。但这种计算验证无法提供数学上一般化的证明。
数学家已经证明了许多与哥德巴赫猜想相关的重要结果。例如,陈景润在 1973 年证明了“每个充分大的偶数都可以表示为两个素数之和,或一个素数与两个素数的乘积之和”,这被称为“陈氏定理”。
2. 考拉兹猜想(Collatz Conjecture)
![]()
考拉兹猜想由德国数学家洛萨·考拉兹(Lothar Collatz)在 1937 年提出,也被称为“3n+1”猜想或“角谷猜想”。
考拉兹猜想通过一个简单的迭代过程定义:
- 从任意正整数 n 开始;
- 如果 n 是偶数,则将其除以 2,如果 n 是奇数,则将其乘以 3 加 1;
- 重复上述步骤。
该猜想则声称:对于任何正整数 n,重复这一过程最终都会到达 1。
举例:
例如,从 n = 6 开始: 6 → 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1
从 n = 19 开始: 19 → 58 → 29 → 88 → 44 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
通过计算机验证,考拉兹猜想对 n 小于 2.95×10^20 以下的数都是成立的,但也无法得出一般性的证明,考拉兹猜想仍然是一个开放问题。
孪生素数猜想(Twin Prime Conjecture)
![]()
孪生素数猜想是素数研究中的一个重要问题,可以追溯到古希腊时代,但正式的表述和研究主要始于 19 世纪。这一猜想关注的是:是否存在无穷多对素数,它们的差为2。
例如: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31) 这些都是孪生素数对。
尽管孪生素数猜想至今未被严格证明,但在这一问题取得了许多重要进展。
- 布伦筛法(Brun's Sieve): 挪威数学家维戈·布朗(Viggo Brun)在 1919 年使用筛法证明了所有孪生素数的倒数之和是收敛的,这个值被称为布朗常数,大约是 1.902。这是对孪生素数猜想的一个重要贡献。
- 张益唐的突破: 2013 年,数学家张益唐取得了突破性的进展。他证明了存在无穷多个素数对,其间隔小于 70,000,000。这一结果被称为“有限间隔素数定理”。张益唐的工作开启了新一轮的研究热潮。
- Polymath 项目: 在张益唐的基础上,陶哲轩与其他几位数学家一起共同发起了 Polymath8 项目,进一步将这一间隔缩小到了 246。这一系列的进展大大增加了数学界对孪生素数猜想最终证明的信心。
通过这些猜想的探索,我们不仅能够见证数学知识的积累和发展,还可以感受到数学家们对未知问题探索的热情和坚持。这些未解问题不仅是数学领域的挑战,也是对人类智慧的挑战,激励着每一位数学爱好者去探索和理解数学的更深层奥秘。
(责任编辑:焦点)
-
当地时间12月29日下午,美国总统特朗普在与以色列总理内塔尼亚胡会晤后对记者表示,他与内塔尼亚胡在约旦河西岸问题上并未完全达成一致,但他拒绝透露双方的具体分歧。特朗普说,相关内容会在适当时机公布,
...[详细]
-
#苏57弹舱缝隙清晰可见#[零距离高清细节图:苏-57机腹弹舱缝隙清晰可见]#第二架苏57现身珠海##苏57抵达珠海# 11月4日,珠海金湾机场迎来本次珠海航展的明星:两架分别进行飞行展示和静态展
...[详细]
-
△黎巴嫩南部资料图) 黎巴嫩公共卫生部当地时间11月5日通报称,自2023年10月8日黎以冲突爆发以来,黎巴嫩境内有3013人死亡,13553人受伤。总台记者 次晓宁)点击进入专题: 中东局势持续升
...[详细]
-
从参议员到总统候选人。 美国当地时间周三11月6日),美国副总统哈里斯致电当选总统特朗普祝贺他成功当选,并承认自己败选。 “就在几分钟前,副总统联系了特朗普总统,承认败选。”哈里斯竞选负责人狄
...[详细]
-
商家套路还是时令美味?冬日霜打菜大起底2025-12-23 14:52:20 来源:北京青年报 作者:刘欢
...[详细]
-
原标题:首次参赛就闯入四强 郑钦文创造历史) 郑钦文,赢了!
...[详细]
-
一大学生两次错过考研网上确认,网友一语中的:别给自己找借口了
研究生招生考试难度之大,从报考的时候考生就能感受得到。每一个环节都具备筛选的意义,只有认真对待,认真备考并具备一定实力的考生,才能笑到最后。考研报名分为预报名和正式报名两个步骤,之后还要在规定时间内在
...[详细]
-
史蒂夫-鲍尔默一如既往地激情四射,他在人墙的第一排鼓掌,跳舞,然后接过了麦克风——“欢迎回家!快船国度!!!”快船新主场的“墙”成功干扰杜兰特罚球。 来源:后厂村体工队) 不过,并不是所有客
...[详细]
-
文/liangchaoxford 广东凉茶煲牛津一昨日流量收入0.70元。这是第64天阅读英文版《傲慢与偏见》。上篇笔记讲到伊莉莎白夸赞宾利是个青年楷模,看简是怎么接着妹妹的话头继续讲宾利:“I w
...[详细]
-
2024年11月7日,美中贸易全国委员会在上海举行纪念中美建交45周年晚宴。谢锋大使在致辞时强调,继往开来向前行,就要守住和平共处的底线。作为安理会常任理事国和核大国,中美和平共处是责任,也是必须
...[详细]

法工委回应“哪位少爷吸了”
字节跳动上半年营收直逼Meta:国内增长降速 TikTok继续狂飙
独家视频丨解放军演习最新画面来了
